5 Diferencias entre OPC UA y OPC Clásico

PorOpiron Electronics

5 Diferencias entre OPC UA y OPC Clásico

Quién más y quien menos, ha escuchado a hablar en alguna ocasión del Internet de las Cosas, también es probable que en alguna ocasión haya escuchado que se puede aplicar a la industria y, si así ha sido, probablemente también OPC UA. ¿Por qué es OPC UA tan importante? ¿Qué diferencias hay entre OPC UA y OPC Clásico?

1. Sistemas Operativos

OPC Clásico está basado en tecnología Windows, ya que utiliza COM / DCOM para mover datos entre aplicaciones. OPC UA, en cambio, se puede implementar sobre cualquier sistema operativo, ya sea Android, Linux o Windows.

2. Tecnología embedida

En OPC UA, los servidores pueden residir dentro de los mismos PLC, formando parte del hardware. En OPC Clásico, los Servidores OPC son drivers que deben instalarse sobre una máquina que se comunique directamente sobre la máquinas.

3. Seguridad

En la era de la información, somos cada vez más conscientes de la importancia de proteger los datos. A diferencia de OPC Clásico, OPC UA permite la encrpitación de las comunicaciones mediante certificados de seguridad que los interlocutores deben conocer antes de empezar a comunicarse.

4. Comportamiento con Firewall

Aquellos que han sufrido los problemas de DCOM sabrán que OPC Clásico no es especialmente amistoso con el Firewall: ya que además de necesitar tener muchos puertos abiertos, necesita de muchas configuraciones. OPC UA es amistoso con el Firewall, basta con abrir un puerto para comunicar aplicaciones.

5. Modelo de información

En OPC Clásico tenemos diferentes tecnologías para lidiar con cada tipo de fuente de datos: OPC DA para el tiempo real, OPC HDA para historización de datos y OPC A&E para alarmas y eventos… todas tecnologías que no pueden comunicarse entre si. Este problema es resuelto con OPC UA, que combina todas ellas en una sola tecnología.

Como vemos, las diferencias entre OPC UA y OPC Clásico son sustanciales, por lo que merece la pena plantearse el modelo de información de la empresa y saber más sobre esta tecnología.

 

 

PorOpiron Electronics

El reto de aprender Modbus por si sólo

Por allá en el año 2007, cuando empecé en este mundo de la automatización, me asignaron un nuevo proyecto: Tenía que comunicar dos máquinas con un protocolo del que ya había escuchado cosas antes, tenía que aprender Modbus.

La empresa para la que yo trabajaba por ese entonces desarrollaba proyectos de automatización y tenía un PLC desde hacía ya varios años que controlaba la extrusora de una fábrica.

Para aquel entonces, la fábrica compró un nuevo conjunto de válvulas y encomendó la tarea de integrarlas al PLC mencionado a la empresa para la que trabajaba, que me asignó a mí el trabajo, uno de mis primeros realmente.

¿Qué hice en ese momento?

Pues me puse a sudar. Pero al mismo tiempo, tuve una sensación difícil de explicar, lo vi como un reto, ¡Tenía que hacerlo!

Me fui a la universidad a buscarme un libro de comunicaciones industriales que tuviese contenido sobre Modbus. En general puedo decir que aprendí cosas, pero antes…

Me frustré.

¿Cómo podía ser que esos libros tuviesen tan pocos ejemplos? Luego de esta parte teórica, vino la parte práctica, es decir, la etapa de programar el PLC en si mismo con algunas funciones Modbus. ¿Cómo podía acceder al mapa de memoria de las válvulas? ¿Cómo podía mapear Entradas y Salidas? Desde luego, el PLC que programaba no tenía mucha literatura.

Me frustré.

¿Cómo podía ser que hubiese pocos ejemplos? Luego de tener una parte del código desarrollada me faltaba poderlo probar con algo… pero en la empresa no tenían ningún dispositivo Modbus, así que ya te lo puedes imaginar, la prueba la tuve que hacer en la misma fábrica.

Me frustré.

¿Cómo podía ser que no hubiese ningún dispositivo para probar? No puedo mencionar la cantidad de cosas que aprendí, pero también la cantidad de horas que me tiré en la fábrica…

¿Y entonces?

Bueno, el proyecto desde luego salió, logré comunicar el PLC con esas nuevas válvulas y la satisfacción que me llevé fue impresionante, me sentí como el mismo Mark Zuckerberg: aquello era impresionante, la fábrica estaba funcionando y en parte era gracias a mí. Era la sensación de éxito.

Pero cuando pasaron unas semanas y maduré la experiencia, recopilé toda la información que había obtenido y la organicé correctamente. Desde luego, pensé que sin esfuerzo no hay éxito, pero también me di cuenta que en realidad había mal gastado muchas horas por errores básicos de organización en mi aprendizaje.

¿Te sientes identificado? Te recomiendo leer esta serie de post para aprender Modbus…

PorOpiron Electronics

3 tecnologías para sentar las bases de industria 4.0

¿Qué líneas de trabajo puedo seguir para implementar éxitosamente la industria 4.0 en mi fábrica? Hoy en día existen múltiples tecnologías, todas ellas complementarias, que sentarán las bases adecuadas para converitr una fábrica convencional en una fábrica 4.0. Veamoslas:

Arquitecturas flexibles: OPC UA

Una arquitectura 4.0 es aquella que puede llevar datos de forma transversal desde los activos de planta hasta la red empresarial – incluida la nube -. Y como el personal de IT sabrá, esto no siempre es tan fácil. Durante los últimos 20 años nos hemos dedicado a poner barreras que tienen por objeto garantizar la seguridad de los activos industriales, como firewalls, dominios diferentes, redes de control independientes a las redes corporativas… pero que realmente no ayudan a generar un movimiento de datos transversal. ¿Cómo llevar datos entre redes? OPC UA.

Tecnología Web: Scada Web

Los SCADA nunca pasan de moda, llevan en la industria desde hace más de 20 años entregando beneficios a las empresas que han mejorado la productividad de las mismas.

  1. Mejorar eficiencia de operación
  2. Maximizar calidad
  3. Optimización de procesos

Si quieres saber cómo funciona un Cloud Scada puedes revisa esta entrada de nuestro blog. También te recomiendo leer los Beneficios de un SCADA móvil.

PLC’s inteligentes

Las fuentes de datos como los PLC deben proveer de seguridad y robustez. En este sentido Codesys es una tecnología ideal para implementar la tecnología inteligente a nivel de planta. Codesys es un entorno de programación que:

  1. Está basado en el estándar IEC 61131-3.
  2. Es independiente del hardware que tengamos en planta.
  3. Provee de múltiples recursos y librerías online.

Te recomiendo leer esta entrada si quieres saber más sobre Codesys. Por supuesto, te recomiendo que nos contactes si quieres hacer un curso, dado que hacemos cursos de Codesys.

Soluciones Industria 4.0

En Opiron tenemos todos los ingredientes disponibles dado que ofrecemos soluciones basadas en OPC UA, Scada y Codesys, herramientas líderes en su campo para llevarte a la auténtica industria 4.0. ¿Estás listo? 🙂

PorOpiron Electronics

¿Modbus y Arduino combinados?

Modbus y Arduino: por un lado un protocolo de comunicación con un larguísimo recorrido en el mundo industrial del que hemos hablado en otras entradas.

Por el otro, una marca que desarrolla placas Open Source de la que Opiron ha hablado largo y tendido en muchos tutoriales. De hecho, tenéis la sección de Arduino abierta en nuestro canal de Youtube.

¿Qué pasaría si combináramos ambos?

¿Un dispositivo con Modbus y Arduino?

Sigamos avanzando en nuestro concepto: Modbus es un protocolo de comunicación que desde hace unos años es libre, y por lo tanto, puede implementarse en múltiples dispositivos sin necesidad de pagar royalties. Por el otro, Arduino es también una plataforma de hardware libre, con una comunidad de programadores y recursos enormes.  Las posibilidades de combinar ambas tecnologías son muchas, pudiendo ampliar las capacidades de comunicación de las placas Arduino con:

  • Sistemas SCADA.
  • Sistemas PLC, RTU.
  • Redes industriales ya existentes.

Pero seguramente conviene no quedarse ahí, puesto que Modbus además aporta la seguridad de apoyar nuestros proyectos sobre una tecnología absolutamente robusta y probada en el mundo industrial.

Modbus: ¿TCP o RTU? , Arduino ¿Qué placa?

Cuestión de tecnología: Como sabemos, de Modbus tenemos diferentes versiones, desde las versiones Modbus RTU hasta las Modbus TCP. Por suerte, todas ellas son integrables con los módulos Arduino gracias a la gran cantidad de librerías desarrolladas para tal fin.  Elegir una u otra dependerá de las necesidades de las comunicaciones que debamos implementar así como de las redes donde se deba integrar el dispositivo. Te recomiendo leer esta entrada para más información.

En cuanto a Arduino, ¿Es Modbus implementable en cualquier placa? La respuesta corta es sí…  Al menos Arduino Mega, Uno o Leonardo sí lo son (probado!)

¿Quieres aprender a implementar Modbus con Arduino?

Es evidente que las ventajas de combinar ambos son enormes. Ahora bien, aprender por separado ambas tecnologías (aunque ya sepas al menos una de ellas), no es tan fácil. Por mucho que haya librerías y recursos disponibles en internet. Por ello, te proponemos que estés atento, puesto que muy pronto lanzaremos un curso que te permitirá convertirte en un experto de ambas tecnologías.

PorOpiron Electronics

Mapa de memoria de Modbus

Para comprender el mapa de memoria de Modbus, basta recordar que Modbus es un protocolo desarrollado para PLC’s, y que a estos se les pueden conectar básicamente 4 tipos de instrumentos: de salida digital, de entrada digital, de salida analógica y de entrada analógica, que coinciden con las 4 áreas que describimos a continuación.

Coils 

Las salidas digitales, también llamadas coils en la mayoría de biblografía que podáis encontrar. Cada registro dispone de 1 bit. La región de salidas digitales va de la dirección @1 a @9999. Por lo tanto, esta región del mapa de memoria ocupa 10.000 bits, y cada bit puede representar una salida digital.

Inputs

Las entradas digitales, también llamadas inputs en muchos libros. Cada registro dispone de 1 bit. La región de entradas digitales va en este caso de la dirección @10001 a @19999. Por lo tanto, al igual que en las salidas, el mapa de memoria de las entradas digitales ocupa 10.000 bits, y cada bit representa una entrada digital.

Input Registers

Las entradas analógicas, que podréis identificar como input registers en la mayoría de bibliografía. Cada registro dispone de 16 bit. La región de entradas digitales va en este caso de la dirección @30001-@40000. Por lo tanto, al igual que en las salidas, el mapa de memoria de las entradas digitales ocupa 160.000 bits. ¿Qué por qué ocupan más bits las entradas analógicas que las digitales? Pues porque en las entradas digitales sólo hay dos estados (abierto o cerrado), mientras que las analógicas pueden tener infinitos (2 elevado a 16) valores entre dos valores diferentes.

Holding Registers

Las salidas analógicas, que podréis identificar como holding registers en la mayoría de bibliografía.  Por lo tanto, al igual que en las salidas, el mapa de memoria de las entradas digitales ocupa 160.000 bits.

¿Y dónde están las direcciones @20001- @30000?

Por si no te has dado cuenta mientras ibas leyendo, entre el espacio que comprende las inputs y las holding registers queda un espacio de direcciones indefinido según el estándar Modbus.

Conclusión

El mapa de memoria de Modbus es un reflejo de los instrumentos que podemos conectar a un PLC. Conocer el mapa de memoria nos permitirá optimizar los accesos a memoria de dispositivos externos, optimizar las conexiones y también depurar / diagnosticar problemas más rápidamente.

PorOpiron Electronics

Redes Modbus: Cuatro puntos a recordar

Imagina que eres un ingeniero de control y un día te llaman por problemas de latencia o sincronización en redes Modbus… ¿Qué parámetros debería consultar? Cada red puede tener sus propias particularidades, veamos 😉

1. Funcionamiento

Lo primero es lo primero: recordar el funcionamiento: En redes Modbus, las reglas de cómo fluye la comunicación las dicta el propio protocolo. En la comunicación, hay siempre un maestro que pregunta datos a uno o varios esclavos al mismo tiempo. El protocolo determina, en función del mensaje enviado por el maestro, qué acción debe tomar el esclavo (por ejemplo, abrir una válvula o comunicar un dato).

2. Capa física

Ya lo hemos mencionado en otros post, estamos hablando de un protocolo de aplicación y por lo tanto, podemos encontrarnos su implementación sobre diferentes medios fìsicos, en concreto, sobre RS-232 o RS-485 – Modbus RTU y Modbus ASCII- y Ethernet, Modbus TCP/IP. Si vamos un poco más allá, las comunicaciones serie y TCP/IP pueden ser implementadas  para conexión por cable, wireless, SMS o GPRS.

En función de cada una además, tenemos más particularidades. En redes Modbus RTU, se prevé un total de 255 direcciones entre @1 y @254 para dispositivos, y la @0 reservada para broadcasting. Cabe mencionar de cada protocolo físico, el broadcasting no es posible sobre RS-232, mientras que en RS-485 el broadcasting se puede extender a 32 dispositivos al mismo tiempo. La velocidad de transferencia para estas redes está limitada a 19,2 kbps.

En redes Modbus TCP/IP, puede haber más dispositivos en la red y también la velocidad de transferencia es mayor, 10/100 Mbaud. Esto convierte a Modbus en un protocolo IoT, tal y como comentábamos en esta entrada.

3. Cantidad de dispositivos

Parece obvio pero muchas veces, no se tiene en consideración. ¿Cuántos dispositivos tiene la red? La cantidad de dispositivos va a afectar en la latencia y sincronización de las comunicaciones.

4. Implementaciones

Por último, podemos encontrar muchas implementaciones diferentes. Por ejemplo, podemos encontrar dispositivos RTU que envíen datos de caudal remotamente desde varios kilómetros de distancia, pero también sistemas más locales conectados a un sistema SCADA.

Conclusión

Hay muchísimas implementaciones posibles de redes Modbus, cada una puede tener características muy diferentes que van a determinar su rendimiento. No olvides estos cuatro puntos 🙂

PorOpiron Electronics

Codesys: 10 tips para iniciarse en la programación

Como comentábamos en otras entradas, Codesys ® es un potente software de programación de PLC’s basado en la norma IEC 61131-3, compatible con una gran variedad de PLC’s de diferentes fabricantes.  ¿Qué tips son recomendados para iniciarse con el entorno? Os dejo a continuación los que son, a mi parecer, los 10 más importantes:

1. Declaración de variables

Todo programa de automatización necesita variables, y en Codesys ® tenemos básicamente dos tipos de variables: las locales y las globales. Las primeras las declaramos en las mismas funciones, mientras que las segundas se declaran insertando un objeto GVL (Global Variable List).

2. Direccionamiento

Cuando programamos en Codesys ® trabajamos con símbolos, no con direcciones de memoria directamente. La asignación de la variable con la dirección de memoria respectiva se puede hacer de dos maneras diferentes.

Codesys

Direccionamiento en CodeSys

Una posibilidad es asignar la dirección de las variables desde la misma declaración de variables con la sintaxis NombreVariable AT %Dirección : TipoDato, o bien desde el objeto de direccionamiento, por ejemplo, el objeto GPIO si usamos una Raspberry PI.

 

3. Referencias cruzadas

Todo programador de PLC necesita poder buscar en algún momento todos aquellos lugares del programa donde una variable está funcionando.

En Codesys ®, las referencias cruzadas las podemos encontrar desde el menú Ver / Referencias Cruzadas.

4. Bloques

Codesys ® está basado en IEC 61131-3, y por lo tanto la forma de organizar las funciones y bloques son las unidades de Organización de Programa (program organization units o POUs), que permiten crear programas, funciones y funciones con memoria. Los bloques se dividen en:

  • POU: Todo bloque que se ejecuta dentro del PLC es un POU.
  • FB: Es un bloque con memoria y, por lo tanto, su salida depende ya no sólo de las entradas actuales sino también del estado de sus variables. Un ejemplo claro es una función PID.
  • FC: Es un bloque sin memoria, y por lo tanto su salida siempre se corresponderá con el valor de la entrada. Un ejemplo son las funciones matemáticas: SQRT, SIN, etc.

Resumiendo, todo bloque en Codesys ® es un POU (De Programmable Organization Unit). Además, cada uno de estos bloques puede estar escrito en los lenguajes de programación definidos por IEC 61131-3: IL, ST, LD, SFC y FBD.

5. Ampliación del software mediante librerías

Si bien el software trae consigo muchas librerías, con el paso del tiempo necesitaremos ampliar con más funciones específicas. Para los profesionales de automatización recomendamos la librería oscat.de

6. HMI integrado

Viene con un HMI incorporado en el software, lo que permite que el desarrollo de la interfaz hombre máquina pueda hacerse en el mismo entorno de desarrollo, pudiendo hacer una integración mucho más efectiva.

7. Versiones de software

Hay dos versiones de software disponibles en la actualidad, la v2.3 y la v.3.5. Cada una tiene sus pros y sus contras, si bien la v3.5 es la más nueva. Recomendamos usar la última.

8. Simulación

Codesys ® trae consigo un simulador potente, una herramienta excelente que nos servirá para poder depurar y probar los programas que hagamos antes de volcarlos a los PLC.

9. Ejemplos: ¿Por dónde empiezo?

En la CoDeSys Store hay varios ejemplos gratuitos muy interesantes que se pueden descargar.

10. Ayuda online

La última versión no tiene un manual específico, pero en cambio trae consigo una ayuda integrada al software muy completa, que es de muchísima utilidad para poder empezar a programar.

PorOpiron Electronics

¿Qué es Modbus?

Si preguntas a un ingeniero si existe un protocolo de comunicación popular, fácil de implementar, y con años de probada fiabilidad en entornos industriales exigentes, lo más seguro que te responda es una palabra mágica: “Modbus”. Con esta frase resumo el éxito de un protocolo de comunicación que lleva décadas de éxito.

¿Qué es Modbus?

Empecemos por lo básico, Modbus es un protocolo de comunicación industrial, que normalmente podemos encontrar en fábricas y edificios inteligentes.

El objetivo del protocolo es la transmisión de información entre distintos equipos electrónicos conectados a un mismo bus. Muchos dispositivos de campo lo usan para poder comunicarse con PLC’s y SCADA’s.

La historia 

Nos tenemos que remontar hasta el año 1979 para recuperar la primera especificación de este protocolo de comunicación. En aquel entonces, los PLC estaban empezando a dar los primeros pasos y Modicon, una empresa que a posteriori fue absorbida por Schneider Electric, desarrolló este protocolo para sus PLC. En el año 2004 fue liberado y hoy en día la Modbus Organization da soporte y promueve su uso.

La tecnología

Las redes Modbus utilizan una arquitectura maestro – esclavo. El maestro inicia las comunicaciones (por ejemplo un SCADA) preguntando datos a un esclavo (por ejemplo un PLC), que le responde siempre en función de la pregunta hecha por el maestro. Cada dispositivo de una red posee una dirección única.

Modbus es un protocolo de aplicación, lo que significa que puede implementarse sobre diferentes capas físicas. Es por ello que podemos encontrar versiones  TCP/IP, o también serie como RTU y ASCII. Por lo tanto, podremos usar Modbus tanto con cables de red como con cables serie, siempre que los dispositivos con los que interactuemos estén preparados para ello.

Conclusión

Si buscas una tecnología fiable y fácil de implementar, debes considerar Modbus como una alternativa a tener muy en cuenta tanto para proyectos de automatización tanto en la industria como en domótica.

PorOpiron Electronics

Cuatro pasos para aprender automatización y no morir en el intento

En tu camino aprendiendo automatización industrial te encontrarás con innumerables dificultades, bajadas y subidas de ánimo, etc. Consejo: Mantén el foco en tu objetivo y no pierdas de vista estas cuatro reglas que he escrito para ti.

Persevera

Primera regla: Persevera. Como casi todo en la vida: se necesita perseverancia para lograr un objetivo. Hay muchísimos momentos en los que podemos ponernos a dudar de si el camino que estamos siguiendo es el correcto. Por ejemplo, podemos pensar que estamos perdiendo el tiempo, que estamos malgastando dinero, etc.

Los sacrificios forman parte inherente del proceso de aprender automatización. Por poner pocos ejemplos, pueden ser dejar de estar horas con los amigos, viendo alguna película o saliendo a pasear. Pero mantén algo siempre presente, por cada sacrificio realizado, tendrás una recompensa.

Ponte metas alcanzables

Segunda regla: Fracciona en metas. La meta “aprender automatización” es casi imposible de lograr. La automatización es un mundo en el que confluyen tantas tecnologías e innovaciones, que aprenderlo todo es casi imposible. En lugar de ponerse metas tan grandes, la clave está en saber fraccionarlas. Por ejemplo, aprender un protocolo de comunicación como Modbus es una meta lograble en un tiempo determinado, iniciarse en el mundo de Codesys también.

No te agobies poniéndote metas que sean imposibles: ¿Irías a hacer una maratón sin antes haberte probado que puedes correr 1 hora sin problemas? ¿No sería mejor marcarte un conjunto de pequeños objetivos, como correr 15 min, luego 30, etc? En la automatización pasa exactamente lo mismo. Ya sabes lo que dicen: divide y vencerás.

Celebra las pequeñas victorias

Tercera regla: Celebra y disfruta. No todo es trabajo, celebrar las pequeñas victorias que vayas consiguiendo es algo absolutamente necesario para mantenernos en el camino. Por ello, cada vez que aprendamos algún concepto nuevo, logremos que un proyecto funcione o simplemente hagamos algún progreso desdeñable, es muy saludable pararse a descansar y celebrarlo como nos guste.

Trabaja en otros proyectos

Cuarta regla: Comparte, comenta. Una práctica que debes seguir siempre:  Trabajar en proyectos con otros ingenieros siempre que puedas. Te enriquecerá porque podrás aprender nuevas formas de enfocar un mismo problema, ver alguna forma de programar diferente de la que podrás sacar provecho, comentar u opinar sobre temas específicos.

Ya lo sabes, por muy bueno que seas, en equipo los resultados pueden multiplicarse.

Una última recomendación

En Opiron tenemos recursos para que puedas lograr tus objetivos: desde cursos online hasta cursos in company, pero también servicios de programación y consultoria. No lo dudes, contáctanos, sabremos cómo ayudarte 😉

PorOpiron Electronics

¿Qué es la escalabilidad en automatización industrial?

El término escalabilidad está muy de moda. Se emplea en campos tan diversos como en el mundo de los negocios, finanzas, software y como no, también empleamos el término de escalabilidad en automatización industrial.

Una definición del término

Empecemos por lo básico, ¿Qué es escalabilidad?. En la ingeniería podríamos decir que escalabilidad  es la propiedad de un sistema para poder ampliarse, sin perder calidad en los servicios ofrecidos. Por ejemplo, un PLC con entradas / salidas escalables, es un PLC que es capaz de poder ampliar la cantidad de entradas / salidas conectadas sin perder calidad en el control que realiza.

La escalabilidad por lo tanto implica flexibilidad y es una característica deseable para el usuario final. Sobretodo, porque ayuda a proteger las inversiones a largo plazo.

Si lo pensamos, nuestra fábrica puede tener expansiones, puede cambiar de proveedores de tecnología o incluso puede requerir de nuevas funcionalidades. Poe lo tanto, necesitamos una fabrica flexible. ¿Qué tecnología nos lo puede permitir, sobre todo a largo plazo?

Estrategia de implementación

La escalabilidad no puede ser agregada a un sistema si no tiene esta propiedad. Esto implica que debemos ser cuidadosos en la elección de la tecnología y que nuestra mente no debe limitarnos en  las miras a corto plazo. Algunas preguntas que nos pueden ayudar son:

  • ¿Podré incrementar las capacidades de mi sistema con esta tecnología?
  • ¿Me hace esta tecnología dependiente del proveedor?
  • ¿Me permite la tecnología seleccionada interoperabilidad entre aplicaciones?

Por ejemplo, cuando nosotros elegimos un driver de comunicación para comunicar un SCADA con un sistema de hardware propietario. Elegir un driver que esté altamente atado a la tecnología del hardware y a la del SCADA nos limitará en el tiempo. (Imaginemos por un momento qué ocurriría si el proveedor no da más soporte al driver, por citar un ejemplo). En cambio, si elegimos un driver que pueda permitirnos comunicar ese SCADA pero ademas con muchas otras aplicaciones al mismo tiempo, obtendremos escalabilidad (ya que ese PLC podrá comunicar los datos con varias aplicaciones al mismo tiempo) y flexibilidad, dado que podremos sustituir aplicaciones sin necesidad de cambiar el driver. En este sentido, OPC y OPC UA son tecnologías escalables y flexibles, puedes leer más de estas tecnologías en este post.

Lo mismo ocurre cuando pensamos en la tecnología de los PLC: es mejor utilizar PLC’s que utilicen software no ligado al hardware que otra tecnología propietaria. En este sentido, Codesys es un gran aliado – puedes ver qué es Codesys  aquí -.

Las tecnologías escalables se distinguen por su capacidad de ser independientes de proveedores y por garantizar la calidad de los servicios en su expansión.

Resumen

La escalabilidad en automatización industrial, así como la funcionalidad son características deseables que garantizan una protección de la inversión para el usuario final en el futuro.